125 research outputs found

    GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory Prediction

    Full text link
    Predicting the future paths of an agent's neighbors accurately and in a timely manner is central to the autonomous applications for collision avoidance. Conventional approaches, e.g., LSTM-based models, take considerable computational costs in the prediction, especially for the long sequence prediction. To support more efficient and accurate trajectory predictions, we propose a novel CNN-based spatial-temporal graph framework GraphTCN, which models the spatial interactions as social graphs and captures the spatio-temporal interactions with a modified temporal convolutional network. In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window. Therefore, it can be executed in parallel for much higher efficiency, and meanwhile with accuracy comparable to best-performing approaches. Experimental results confirm that our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.Comment: 10 pages, 7 figures, 3 table

    Controlled release of nitric oxide chemotherapy using a nanosized biodegradable multi-arm polymer

    Get PDF
    Nitric oxide is a cell signaling molecule that can be a potent inducer of cell death in cancers at elevated concentrations. Nitric oxide molecules are short-lived in vivo; therefore, NO-donating prodrugs have been developed that can deliver NO to tissues at micromolar concentrations. However, NO is also toxic to normal tissues and chronic exposure at low levels can induce tumor growth. We have designed a polymeric carrier system to deliver nitric oxide locoregionally to tumorigenic tissues. A highly water solubility and biodegradable 4-arm polymer nanocarrier, sugar poly-(6-O-methacryloyl-D-galactose), was synthesized using MADIX/RAFT polymerization, and utilized to deliver high concentrations of nitric oxide to xenografts of human head and neck squamous cell carcinoma (HNSCC). The in vitro release of the newly synthesized nitric oxide donor, O2-(2,4-dinitrophenyl) 1-[4-(2-hydroxy)ethyl]-3-methylpiperazin-1-yl]diazen-1-ium-1,2-diolate and its corresponding multi-arm polymer-based nanoconjugate demonstrated a 1- and 2.3-fold increase in half-life, respectively, compared to the release half-life of the nitric oxide -donor prodrug JS-K. When administered to tumor-bearing nude mice, the subcutaneously injected multi-arm polymer nitric oxide nanoparticles resulted in 50% tumor inhibition and a 7-week extension of the average survival time, compared to intravenous JS-K therapy (nitric oxide nanoparticles: CR=25%, PR=37.5%, PD=37.5%; JS-K: PD=100%). In summary, we have developed an effective nitric oxide anti-cancer chemotherapy that could be administered regionally to provide the local disease control, improving prognosis for head and neck cancers

    Improved 11α-hydroxycanrenone production by modification of cytochrome P450 monooxygenase gene in Aspergillus ochraceus

    Get PDF
    Eplerenone is a drug that protects the cardiovascular system. 11α-Hydroxycanrenone is a key intermediate in eplerenone synthesis. We found that although the cytochrome P450 (CYP) enzyme system in Aspergillus ochraceus strain MF018 could catalyse the conversion of canrenone to 11α-hydroxycanrenone, its biocatalytic efficiency is low. To improve the efficiency of 11α-hydroxycanrenone production, the CYP monooxygenase-coding gene of MF018 was predicted and cloned based on whole-genome sequencing results. A recombinant A. ochraceus strain MF010 with the high expression of CYP monooxygenase was then obtained through homologous recombination. The biocatalytic rate of this recombinant strain reached 93 % at 60 h without the addition of organic solvents or surfactants and was 17–18 % higher than that of the MF018 strain. Moreover, the biocatalytic time of the MF010 strain was reduced by more than 30 h compared with that of the MF018 strain. These results show that the recombinant A. ochraceus strain MF010 can overcome the limitation of substrate biocatalytic efficiency and thus holds a high potential for application in the industrial production of eplerenone
    corecore